import tensorflow as tf from keras import metrics class CustomMetric(metrics.Metric): def __init__(self, thresholds=0.5, name="custom_metric", **kwargs): super(CustomMetric, self).__init__(name=name, **kwargs) self.thresholds = thresholds self.true_positives = self.add_weight(name="ctp", initializer="zeros") self.count = self.add_weight(name="count", initializer="zeros", dtype='int32') @staticmethod def y_true_with_others(y_true): y_true_idx = tf.argmax(y_true, axis=1) + 1 y_true_is_other = tf.cast(tf.math.reduce_sum(y_true, axis=1), "int64") y_true = tf.math.multiply(y_true_idx, y_true_is_other) return y_true def y_pred_with_others(self, y_pred): y_pred_idx = tf.argmax(y_pred, axis=1) + 1 y_pred_is_other = tf.cast(tf.math.greater_equal(tf.math.reduce_max(y_pred, axis=1), self.thresholds), 'int64') y_pred = tf.math.multiply(y_pred_idx, y_pred_is_other) return y_pred def update_state(self, y_true, y_pred, sample_weight=None): y_true = self.y_true_with_others(y_true) y_pred = self.y_pred_with_others(y_pred) # print(y_true) # print(y_pred) values = tf.cast(y_true, "int32") == tf.cast(y_pred, "int32") values = tf.cast(values, "float32") if sample_weight is not None: sample_weight = tf.cast(sample_weight, "float32") values = tf.multiply(values, sample_weight) self.true_positives.assign_add(tf.reduce_sum(values)) self.count.assign_add(tf.shape(y_true)[0]) def result(self): return self.true_positives / tf.cast(self.count, 'float32') def reset_state(self): # The state of the metric will be reset at the start of each epoch. self.true_positives.assign(0.0) self.count.assign(0)