Skip to content
Toggle navigation
Toggle navigation
This project
Loading...
Sign in
乔峰昇
/
tamper_det
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Network
Create a new issue
Builds
Commits
Issue Boards
Files
Commits
Network
Compare
Branches
Tags
5e7dd86a
authored
2022-10-14 16:56:15 +0800
by
乔峰昇
Browse Files
Options
Browse Files
Tag
Download
Email Patches
Plain Diff
add pipeline inference
1 parent
7c864e59
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
90 additions
and
26 deletions
bank_ocr_inference.py
export.py
inference.py
models/yolov5_config.py
pipeline.py
plot_sourece_labels.py
bank_ocr_inference.py
0 → 100644
View file @
5e7dd86
This diff is collapsed.
Click to expand it.
export.py
View file @
5e7dd86
...
...
@@ -576,8 +576,8 @@ def run(
def
parse_opt
():
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--data'
,
type
=
str
,
default
=
ROOT
/
'data/
coco128
.yaml'
,
help
=
'dataset.yaml path'
)
parser
.
add_argument
(
'--weights'
,
nargs
=
'+'
,
type
=
str
,
default
=
ROOT
/
'
yolov5s
.pt'
,
help
=
'model.pt path(s)'
)
parser
.
add_argument
(
'--data'
,
type
=
str
,
default
=
ROOT
/
'data/
VOC
.yaml'
,
help
=
'dataset.yaml path'
)
parser
.
add_argument
(
'--weights'
,
nargs
=
'+'
,
type
=
str
,
default
=
ROOT
/
'
runs/train/exp/weights/best
.pt'
,
help
=
'model.pt path(s)'
)
parser
.
add_argument
(
'--imgsz'
,
'--img'
,
'--img-size'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
640
,
640
],
help
=
'image (h, w)'
)
parser
.
add_argument
(
'--batch-size'
,
type
=
int
,
default
=
1
,
help
=
'batch size'
)
parser
.
add_argument
(
'--device'
,
default
=
'cpu'
,
help
=
'cuda device, i.e. 0 or 0,1,2,3 or cpu'
)
...
...
inference.py
View file @
5e7dd86
...
...
@@ -95,7 +95,13 @@ class Yolov5:
if
__name__
==
"__main__"
:
img
=
cv2
.
imread
(
'/home/situ/qfs/invoice_tamper/09_project/project/
yolov5_inference/data/images/crop_img/_1594890230.8032346page_10_img_0_hname.jp
g'
)
'/home/situ/qfs/invoice_tamper/09_project/project/
tamper_det/data/images/img_1.pn
g'
)
detector
=
Yolov5
(
config
)
result
=
detector
.
detect
(
img
)
for
i
in
result
[
'result'
]:
position
=
list
(
i
.
values
())[
2
:]
print
(
position
)
cv2
.
rectangle
(
img
,(
position
[
0
],
position
[
1
]),(
position
[
0
]
+
position
[
2
],
position
[
1
]
+
position
[
3
]),(
0
,
0
,
255
))
cv2
.
imshow
(
'w'
,
img
)
cv2
.
waitKey
(
0
)
print
(
result
)
...
...
models/yolov5_config.py
View file @
5e7dd86
from
easydict
import
EasyDict
as
edict
config
=
edict
(
# weights='/home/situ/qfs/invoice_tamper/09_project/project/yolov5_inference/runs/exp2/weights/best.pt', # model path or triton URL
weights
=
'runs/train/exp/weights/best.pt'
,
# model path or triton URL
data
=
'data/VOC.yaml'
,
# dataset.yaml path
imgsz
=
(
640
,
640
),
# inference size (height, width)
conf_thres
=
0.
5
,
# confidence threshold
conf_thres
=
0.
2
,
# confidence threshold
iou_thres
=
0.45
,
# NMS IOU threshold
max_det
=
1000
,
# maximum detections per image
device
=
''
# cuda device, i.e. 0 or 0,1,2,3 or cpu
...
...
pipeline.py
View file @
5e7dd86
import
time
import
cv2
from
bank_ocr_inference
import
bill_ocr
,
extract_bank_info
from
inference
import
Yolov5
from
models.yolov5_config
import
config
def
enlarge_position
(
box
):
x1
,
y1
,
x2
,
y2
=
box
w
,
h
=
abs
(
x2
-
x1
),
abs
(
y2
-
y1
)
y1
,
y2
=
max
(
y1
-
h
//
3
,
0
),
y2
+
h
//
3
x1
,
x2
=
max
(
x1
-
w
//
8
,
0
),
x2
+
w
//
8
return
[
x1
,
y1
,
x2
,
y2
]
def
tamper_detect
(
image
):
st
=
time
.
time
()
ocr_results
=
bill_ocr
(
image
)
et1
=
time
.
time
()
info_results
=
extract_bank_info
(
ocr_results
)
et2
=
time
.
time
()
print
(
info_results
)
tamper_results
=
[]
if
len
(
info_results
)
!=
0
:
for
info_result
in
info_results
:
box
=
[
info_result
[
1
][
0
],
info_result
[
1
][
1
],
info_result
[
1
][
4
],
info_result
[
1
][
5
]]
x1
,
y1
,
x2
,
y2
=
enlarge_position
(
box
)
# x1, y1, x2, y2 = box
info_image
=
image
[
y1
:
y2
,
x1
:
x2
,
:]
cv2
.
imshow
(
'info_image'
,
info_image
)
results
=
detector
.
detect
(
info_image
)
print
(
results
)
if
len
(
results
[
'result'
])
!=
0
:
for
res
in
results
[
'result'
]:
left
=
int
(
res
[
'left'
])
top
=
int
(
res
[
'top'
])
width
=
int
(
res
[
'width'
])
height
=
int
(
res
[
'height'
])
absolute_position
=
[
x1
+
left
,
y1
+
top
,
x1
+
left
+
width
,
y1
+
top
+
height
]
tamper_results
.
append
(
absolute_position
)
print
(
tamper_results
)
et3
=
time
.
time
()
print
(
f
'all:{et3-st} ocr:{et1-st} extract:{et2-et1} yolo:{et3-et2}'
)
for
i
in
tamper_results
:
cv2
.
rectangle
(
image
,
tuple
(
i
[:
2
]),
tuple
(
i
[
2
:]),
(
0
,
0
,
255
),
2
)
cv2
.
imshow
(
'info'
,
image
)
cv2
.
waitKey
(
0
)
if
__name__
==
'__main__'
:
detector
=
Yolov5
(
config
)
image
=
cv2
.
imread
(
"/home/situ/下载/_1597378020.731796page_33_img_0.jpg"
)
tamper_detect
(
image
)
...
...
plot_sourece_labels.py
View file @
5e7dd86
...
...
@@ -10,9 +10,9 @@ def get_source_image_det(crop_position, predict_positions):
result
=
[]
x1
,
y1
,
x2
,
y2
=
crop_position
for
p
in
predict_positions
:
px1
,
py1
,
px2
,
py2
,
score
=
p
px1
,
py1
,
px2
,
py2
,
score
=
p
w
,
h
=
px2
-
px1
,
py2
-
py1
result
.
append
([
x1
+
px1
,
y1
+
py1
,
x1
+
px1
+
w
,
y1
+
py1
+
h
,
score
])
result
.
append
([
x1
+
px1
,
y1
+
py1
,
x1
+
px1
+
w
,
y1
+
py1
+
h
,
score
])
return
result
...
...
@@ -22,9 +22,9 @@ def decode_label(image, label_path):
result
=
[]
for
d
in
data
:
d
=
[
float
(
i
)
for
i
in
d
.
strip
()
.
split
(
' '
)]
cls
,
cx
,
cy
,
cw
,
ch
,
score
=
d
cls
,
cx
,
cy
,
cw
,
ch
,
score
=
d
cx
,
cy
,
cw
,
ch
=
cx
*
w
,
cy
*
h
,
cw
*
w
,
ch
*
h
result
.
append
([
int
(
cx
-
cw
//
2
),
int
(
cy
-
ch
//
2
),
int
(
cx
+
cw
//
2
),
int
(
cy
+
ch
//
2
),
score
])
result
.
append
([
int
(
cx
-
cw
//
2
),
int
(
cy
-
ch
//
2
),
int
(
cx
+
cw
//
2
),
int
(
cy
+
ch
//
2
),
score
])
return
result
...
...
@@ -38,28 +38,28 @@ if __name__ == '__main__':
data
=
pd
.
read_csv
(
crop_csv_path
)
img_name
=
data
.
loc
[:,
'img_name'
]
.
tolist
()
crop_position1
=
data
.
loc
[:,
'name_crop_coord'
]
.
tolist
()
crop_position2
=
data
.
loc
[:,
'number_crop_coord'
]
.
tolist
()
cc
=
'/data/situ_invoice_bill_data/new_data/qfs_bank_bill_data/gongshang/tampered/images/val/ps3'
crop_position2
=
data
.
loc
[:,
'number_crop_coord'
]
.
tolist
()
cc
=
'/data/situ_invoice_bill_data/new_data/qfs_bank_bill_data/gongshang/tampered/images/val/ps3'
for
im
in
os
.
listdir
(
cc
):
print
(
im
)
img
=
cv2
.
imread
(
os
.
path
.
join
(
cc
,
im
))
img_
=
img
.
copy
()
img
=
cv2
.
imread
(
os
.
path
.
join
(
cc
,
im
))
img_
=
img
.
copy
()
id
=
img_name
.
index
(
im
)
name_crop_position
=
[
int
(
i
)
for
i
in
crop_position1
[
id
]
.
split
(
','
)]
number_crop_position
=
[
int
(
i
)
for
i
in
crop_position2
[
id
]
.
split
(
','
)]
nx1
,
ny1
,
nx2
,
ny2
=
name_crop_position
nux1
,
nuy1
,
nux2
,
nuy2
=
number_crop_position
if
im
[:
-
4
]
+
'_hname.txt'
in
predict_labels
:
name_crop_position
=
[
int
(
i
)
for
i
in
crop_position1
[
id
]
.
split
(
','
)]
number_crop_position
=
[
int
(
i
)
for
i
in
crop_position2
[
id
]
.
split
(
','
)]
nx1
,
ny1
,
nx2
,
ny2
=
name_crop_position
nux1
,
nuy1
,
nux2
,
nuy2
=
number_crop_position
if
im
[:
-
4
]
+
'_hname.txt'
in
predict_labels
:
h
,
w
,
c
=
img
[
ny1
:
ny2
,
nx1
:
nx2
,
:]
.
shape
data
=
open
(
os
.
path
.
join
(
predict_label_path
,
im
[:
-
4
]
+
'_hname.txt'
))
.
readlines
()
data
=
open
(
os
.
path
.
join
(
predict_label_path
,
im
[:
-
4
]
+
'_hname.txt'
))
.
readlines
()
for
d
in
data
:
cls
,
cx
,
cy
,
cw
,
ch
,
score
=
[
float
(
i
)
for
i
in
d
.
strip
()
.
split
(
' '
)]
cx
,
cy
,
cw
,
ch
=
int
(
cx
*
w
),
int
(
cy
*
h
),
int
(
cw
*
w
),
int
(
ch
*
h
)
cx1
,
cy1
=
cx
-
cw
//
2
,
cy
-
ch
//
2
x1
,
y1
,
x2
,
y2
=
nx1
+
cx1
,
ny1
+
cy1
,
nx1
+
cx1
+
cw
,
ny1
+
cy1
+
ch
cv2
.
rectangle
(
img
,
(
x1
,
y1
),(
x2
,
y2
),(
0
,
0
,
255
),
2
)
cv2
.
putText
(
img
,
f
'tampered:{score}'
,(
x1
,
y1
-
5
),
cv2
.
FONT_HERSHEY_SIMPLEX
,
0.5
,(
0
,
0
,
255
),
1
)
cls
,
cx
,
cy
,
cw
,
ch
,
score
=
[
float
(
i
)
for
i
in
d
.
strip
()
.
split
(
' '
)]
cx
,
cy
,
cw
,
ch
=
int
(
cx
*
w
),
int
(
cy
*
h
),
int
(
cw
*
w
),
int
(
ch
*
h
)
cx1
,
cy1
=
cx
-
cw
//
2
,
cy
-
ch
//
2
x1
,
y1
,
x2
,
y2
=
nx1
+
cx1
,
ny1
+
cy1
,
nx1
+
cx1
+
cw
,
ny1
+
cy1
+
ch
cv2
.
rectangle
(
img
,
(
x1
,
y1
),
(
x2
,
y2
),
(
0
,
0
,
255
),
2
)
cv2
.
putText
(
img
,
f
'tampered:{score}'
,
(
x1
,
y1
-
5
),
cv2
.
FONT_HERSHEY_SIMPLEX
,
0.5
,
(
0
,
0
,
255
),
1
)
if
im
[:
-
4
]
+
'_hnumber.txt'
in
predict_labels
:
h
,
w
,
c
=
img
[
nuy1
:
nuy2
,
nux1
:
nux2
,
:]
.
shape
data
=
open
(
os
.
path
.
join
(
predict_label_path
,
im
[:
-
4
]
+
'_hname.txt'
))
.
readlines
()
...
...
@@ -70,5 +70,5 @@ if __name__ == '__main__':
x1
,
y1
,
x2
,
y2
=
nux1
+
cx1
,
nuy1
+
cy1
,
nux1
+
cx1
+
cw
,
nuy1
+
cy1
+
ch
cv2
.
rectangle
(
img
,
(
x1
,
y1
),
(
x2
,
y2
),
(
0
,
0
,
255
),
2
)
cv2
.
putText
(
img
,
f
'tampered:{score}'
,
(
x1
,
y1
-
5
),
cv2
.
FONT_HERSHEY_SIMPLEX
,
0.5
,
(
0
,
0
,
255
),
1
)
result
=
np
.
vstack
((
img_
,
img
))
cv2
.
imwrite
(
f
'z/{im}'
,
result
)
result
=
np
.
vstack
((
img_
,
img
))
cv2
.
imwrite
(
f
'z/{im}'
,
result
)
...
...
Write
Preview
Styling with
Markdown
is supported
Attach a file
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to post a comment