#ifndef RETINAFACE_H #define RETINAFACE_H #include<opencv2/opencv.hpp> using namespace std; using namespace cv; struct Bbox{ float xmin; float ymin; float xmax; float ymax; float score; float x1; float y1; float x2; float y2; float x3; float y3; float x4; float y4; float x5; float y5; }; class RetinaFace{ private: bool use_gpu=true; vector<float> input_size={640,640}; vector<float> variances={0.1,0.2}; vector<float> mean_data={104,117,128}; float confidence_threshold = 0.8; float keep_top_k = 100; float vis_threshold = 0.2; float nms_threshold = 0.4; float resize_scale = 1.0; bool is_bbox_process=true; cv::dnn::Net net; vector<vector<float>> anchors; private: // 生成anchors vector<vector<float>> priorBox(vector<float> image_size); // 解析bounding box landmarks 包含置信度 vector<Bbox> decode(Mat loc,Mat score,Mat pre,vector<vector<float>> priors,vector<float> variances); // 解析landmarks // vector<vector<float>> decode_landm(vector<vector<float>> pre,vector<vector<float>> priors,vector<float> variances); //NMS void nms_cpu(std::vector<Bbox> &bboxes, float threshold); // Mat转vector vector<vector<float>> mat2vector(Mat mat); // 根据阈值筛选 vector<Bbox> select_score(vector<Bbox> bboxes,float threshold,float w_r,float h_r); // vector转Bbox // vector<Bbox> vec2Bbox(vector<vector<float>> bbox,float w_r,float h_r); // 数据后处理 vector<Bbox> bbox_process(bool is_bbox_process,vector<Bbox> bboxes,float frame_w,float frame_h); public: RetinaFace(){}; RetinaFace(string model_path){ net = cv::dnn::readNetFromONNX(model_path); if(use_gpu){ net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); } anchors=priorBox(input_size); } // 推理 vector<Bbox> detect(string image_path); vector<Bbox> detect_image(Mat image); }; #endif