the first submit
0 parents
Showing
9 changed files
with
706 additions
and
0 deletions
README.md
0 → 100644
1 | |||
2 | opencv4.5.5 | ||
3 | |||
4 | 模型初始化 | ||
5 | |||
6 | FaceRecognize face_rec=FaceRecognize(det_model_path,landm_model_path,rec_model_path) | ||
7 | |||
8 | det_model_path:人脸检测模型retinaface的onnx模型路径 | ||
9 | landm_model_path:106人脸关键点模型的onnx模型路径 | ||
10 | rec_model_path:人脸识别模型的onnx模型路径 | ||
11 | |||
12 | 重要参数(.h文件) | ||
13 | |||
14 | bool use_gpu=true; //是否使用gpu | ||
15 | float confidence_threshold = 0.5; //人脸检测阈值 | ||
16 | float nms_threshold = 0.4; //nms阈值 | ||
17 | double face_recongnize_thr = 0.2; //人脸相似度阈值 | ||
18 | |||
19 | 接口(返回结果 bool:true/false) | ||
20 | |||
21 | bool face_recognize(string image1_path,string image2_path);参数为两张图像地址,其中iamge1_path为face_id图像输入 | ||
22 | bool face_recognize_image(Mat image1,Mat image2);参数为两张opencv读取的图像矩阵,其中iamge1为face_id图像输入 | ||
23 | |||
24 | 编译 | ||
25 | |||
26 | g++ main.cpp -L . -lfacerecognize -o main | ||
27 | 如果报错无法找到改用:g++ main.cpp -L . -lfacerecognize -o main pkg-config --libs --cflags opencv4 | ||
28 | ./main |
det_face_retina_torch_1.4_v0.0.2.onnx
0 → 100644
No preview for this file type
det_landmarks_106_v0.0.1.onnx
0 → 100644
No preview for this file type
facerecognize.cpp
0 → 100644
1 | #include "facerecognize.h" | ||
2 | #include<iostream> | ||
3 | //人脸检测部分 | ||
4 | // 生成anchors | ||
5 | vector<vector<float>> FaceRecognize::priorBox(vector<float> image_size){ | ||
6 | vector<int> tmp1={16,32}; | ||
7 | vector<int> tmp2={64,128}; | ||
8 | vector<int> tmp3={256,512}; | ||
9 | vector<vector<int>> min_sizes_; | ||
10 | min_sizes_.push_back(tmp1); | ||
11 | min_sizes_.push_back(tmp2); | ||
12 | min_sizes_.push_back(tmp3); | ||
13 | vector<int> steps={8,16,32}; | ||
14 | vector<vector<int>> feature_maps; | ||
15 | vector<vector<float>> anchors; | ||
16 | for(int &step:steps){ | ||
17 | vector<int> tmp(2,0); | ||
18 | tmp[0]=ceil(image_size[0]/step); | ||
19 | tmp[1]=ceil(image_size[1]/step); | ||
20 | feature_maps.push_back(tmp); | ||
21 | } | ||
22 | for(int k=0;k<feature_maps.size();k++){ | ||
23 | vector<int> min_sizes=min_sizes_[k]; | ||
24 | |||
25 | for(int i=0;i<feature_maps[k][0];i++){ | ||
26 | for(int j=0;j<feature_maps[k][1];j++){ | ||
27 | for(int &min_size:min_sizes){ | ||
28 | float s_kx=float(min_size)/float(image_size[1]); | ||
29 | float s_ky=float(min_size)/float(image_size[0]); | ||
30 | float dense_cx=float((float(j)+float(0.5))*steps[k])/float(image_size[1]); | ||
31 | float dense_cy=float((float(i)+float(0.5))*steps[k])/float(image_size[1]); | ||
32 | vector<float> tmp_anchor={dense_cx,dense_cy,s_kx,s_ky}; | ||
33 | anchors.push_back(tmp_anchor); | ||
34 | } | ||
35 | } | ||
36 | } | ||
37 | } | ||
38 | return anchors; | ||
39 | } | ||
40 | |||
41 | // 解析bounding box 包含置信度 | ||
42 | vector<Bbox> FaceRecognize::decode(vector<vector<float>> loc,vector<vector<float>> score,vector<vector<float>>pre,vector<vector<float>> priors,vector<float> variances){ | ||
43 | vector<Bbox> boxes; | ||
44 | for(int i=0;i<priors.size();++i){ | ||
45 | float b1=priors[i][0]+loc[i][0]*variances[0]*priors[i][2]; | ||
46 | float b2=priors[i][1]+loc[i][1]*variances[0]*priors[i][3]; | ||
47 | float b3=priors[i][2]*exp(loc[i][2]*variances[1]); | ||
48 | float b4=priors[i][3]*exp(loc[i][3]*variances[1]); | ||
49 | b1=b1-b3/float(2); | ||
50 | b2=b2-b4/float(2); | ||
51 | b3=b3+b1; | ||
52 | b4=b4+b2; | ||
53 | float l1=priors[i][0]+pre[i][0]*variances[0]*priors[i][2]; | ||
54 | float l2=priors[i][1]+pre[i][1]*variances[0]*priors[i][3]; | ||
55 | float l3=priors[i][0]+pre[i][2]*variances[0]*priors[i][2]; | ||
56 | float l4=priors[i][1]+pre[i][3]*variances[0]*priors[i][3]; | ||
57 | float l5=priors[i][0]+pre[i][4]*variances[0]*priors[i][2]; | ||
58 | float l6=priors[i][1]+pre[i][5]*variances[0]*priors[i][3]; | ||
59 | float l7=priors[i][0]+pre[i][6]*variances[0]*priors[i][2]; | ||
60 | float l8=priors[i][1]+pre[i][7]*variances[0]*priors[i][3]; | ||
61 | float l9=priors[i][0]+pre[i][8]*variances[0]*priors[i][2]; | ||
62 | float l10=priors[i][1]+pre[i][9]*variances[0]*priors[i][3]; | ||
63 | Bbox tmp_box={.xmin=b1*input_size[0]/resize_scale,.ymin=b2*input_size[1]/resize_scale,.xmax=b3*input_size[0]/resize_scale,.ymax=b4*input_size[1]/resize_scale, | ||
64 | .score=float(score[i][0]),.x1=(l1*input_size[0])/resize_scale,.y1=l2*input_size[1]/resize_scale,.x2=l3*input_size[0]/resize_scale,.y2=l4*input_size[1]/resize_scale, | ||
65 | .x3=l5*input_size[0]/resize_scale,.y3=l6*input_size[1]/resize_scale,.x4=l7*input_size[0]/resize_scale,.y4=l8*input_size[1]/resize_scale,.x5=l9*input_size[0]/resize_scale,.y5=l10*input_size[1]/resize_scale}; | ||
66 | boxes.push_back(tmp_box); | ||
67 | } | ||
68 | return boxes; | ||
69 | } | ||
70 | |||
71 | //NMS | ||
72 | void FaceRecognize::nms_cpu(std::vector<Bbox> &bboxes, float threshold){ | ||
73 | if (bboxes.empty()){ | ||
74 | return ; | ||
75 | } | ||
76 | // 1.之前需要按照score排序 | ||
77 | std::sort(bboxes.begin(), bboxes.end(), [&](Bbox b1, Bbox b2){return b1.score>b2.score;}); | ||
78 | // 2.先求出所有bbox自己的大小 | ||
79 | std::vector<float> area(bboxes.size()); | ||
80 | for (int i=0; i<bboxes.size(); ++i){ | ||
81 | area[i] = (bboxes[i].xmax - bboxes[i].xmin + 1) * (bboxes[i].ymax - bboxes[i].ymin + 1); | ||
82 | } | ||
83 | // 3.循环 | ||
84 | for (int i=0; i<bboxes.size(); ++i){ | ||
85 | for (int j=i+1; j<bboxes.size(); ){ | ||
86 | float left = std::max(bboxes[i].xmin, bboxes[j].xmin); | ||
87 | float right = std::min(bboxes[i].xmax, bboxes[j].xmax); | ||
88 | float top = std::max(bboxes[i].ymin, bboxes[j].ymin); | ||
89 | float bottom = std::min(bboxes[i].ymax, bboxes[j].ymax); | ||
90 | float width = std::max(right - left + 1, 0.f); | ||
91 | float height = std::max(bottom - top + 1, 0.f); | ||
92 | float u_area = height * width; | ||
93 | float iou = (u_area) / (area[i] + area[j] - u_area); | ||
94 | if (iou>=threshold){ | ||
95 | bboxes.erase(bboxes.begin()+j); | ||
96 | area.erase(area.begin()+j); | ||
97 | }else{ | ||
98 | ++j; | ||
99 | } | ||
100 | } | ||
101 | } | ||
102 | } | ||
103 | // Mat转vector | ||
104 | vector<vector<float>> FaceRecognize::mat2vector(Mat mat){ | ||
105 | vector<vector<float>> vec; | ||
106 | for(int i=0;i<mat.rows;++i){ | ||
107 | vector<float> m; | ||
108 | for(int j=0;j<mat.cols;++j){ | ||
109 | m.push_back(mat.at<float>(i,j)); | ||
110 | } | ||
111 | vec.push_back(m); | ||
112 | } | ||
113 | return vec; | ||
114 | } | ||
115 | // 根据阈值筛选 | ||
116 | vector<Bbox> FaceRecognize::select_score(vector<Bbox> bboxes,float threshold,float w_r,float h_r){ | ||
117 | vector<Bbox> results; | ||
118 | for(Bbox &box:bboxes){ | ||
119 | if (float(box.score)>=threshold){ | ||
120 | box.xmin=box.xmin/w_r; | ||
121 | box.ymin=box.ymin/h_r; | ||
122 | box.xmax=box.xmax/w_r; | ||
123 | box.ymax=box.ymax/h_r; | ||
124 | box.x1=box.x1/w_r; | ||
125 | box.y1=box.y1/h_r; | ||
126 | box.x2=box.x2/w_r; | ||
127 | box.y2=box.y2/h_r; | ||
128 | box.x3=box.x3/w_r; | ||
129 | box.y3=box.y3/h_r; | ||
130 | box.x4=box.x4/w_r; | ||
131 | box.y4=box.y4/h_r; | ||
132 | box.x5=box.x5/w_r; | ||
133 | box.y5=box.y5/h_r; | ||
134 | results.push_back(box); | ||
135 | } | ||
136 | } | ||
137 | return results; | ||
138 | } | ||
139 | |||
140 | // 数据后处理 | ||
141 | vector<Bbox> FaceRecognize::bbox_process(vector<Bbox> bboxes,float frame_w,float frame_h){ | ||
142 | vector<Bbox> result_bboxes; | ||
143 | for(Bbox &bbox:bboxes){ | ||
144 | Bbox new_bbox; | ||
145 | float face_w=bbox.xmax-bbox.xmin; | ||
146 | float face_h=bbox.ymax-bbox.ymin; | ||
147 | new_bbox.xmin=bbox.xmin-face_w*0.15; | ||
148 | new_bbox.xmax=bbox.xmax+face_w*0.15; | ||
149 | new_bbox.ymin=bbox.ymin; | ||
150 | new_bbox.ymax=bbox.ymax+face_h*0.15; | ||
151 | new_bbox.xmin=new_bbox.xmin>0?new_bbox.xmin:0; | ||
152 | new_bbox.ymin=new_bbox.ymin>0?new_bbox.ymin:0; | ||
153 | new_bbox.xmax=new_bbox.xmax>frame_w?frame_w:new_bbox.xmax; | ||
154 | new_bbox.ymax=new_bbox.ymax>frame_h?frame_h:new_bbox.ymax; | ||
155 | new_bbox.score=bbox.score; | ||
156 | new_bbox.x1=bbox.x1>0?bbox.x1:0; | ||
157 | new_bbox.y1=bbox.y1>0?bbox.y1:0; | ||
158 | new_bbox.x2=bbox.x2>0?bbox.x2:0; | ||
159 | new_bbox.y2=bbox.y2>0?bbox.y2:0; | ||
160 | new_bbox.x3=bbox.x3>0?bbox.x3:0; | ||
161 | new_bbox.y3=bbox.y3>0?bbox.y3:0; | ||
162 | new_bbox.x4=bbox.x4>0?bbox.x4:0; | ||
163 | new_bbox.y4=bbox.y4>0?bbox.y4:0; | ||
164 | new_bbox.x5=bbox.x5>0?bbox.x5:0; | ||
165 | new_bbox.y5=bbox.y5>0?bbox.y5:0; | ||
166 | result_bboxes.push_back(new_bbox); | ||
167 | |||
168 | } | ||
169 | return result_bboxes; | ||
170 | } | ||
171 | // 推理 | ||
172 | vector<Bbox> FaceRecognize::detect(string image_path){ | ||
173 | cv::Mat image = cv::imread(image_path); // 读取图片 | ||
174 | float w_r=float(640)/float(image.cols); | ||
175 | float h_r=float(640)/float(image.rows); | ||
176 | cv::Mat blob = cv::dnn::blobFromImage(image,resize_scale,Size(input_size[0],input_size[1]),Scalar(mean_data[0],mean_data[1],mean_data[2])); // 由图片加载数据 这里还可以进行缩放、归一化等预处理 | ||
177 | det_net.setInput(blob); // 设置模型输入 | ||
178 | std::vector<cv::Mat> det_netOutputImg; | ||
179 | det_net.forward(det_netOutputImg,det_net.getUnconnectedOutLayersNames()); // 推理出结果 | ||
180 | cv::Mat scores_ = det_netOutputImg[2].reshape(1,16800); | ||
181 | cv::Mat boxes_ = det_netOutputImg[0].reshape(1,16800); | ||
182 | cv::Mat landms_ = det_netOutputImg[1].reshape(1,16800); | ||
183 | std::vector<vector<float>> scores,boxes,landms; | ||
184 | |||
185 | scores=mat2vector(scores_); | ||
186 | boxes=mat2vector(boxes_); | ||
187 | landms=mat2vector(landms_); | ||
188 | |||
189 | |||
190 | vector<vector<float>> anchors=priorBox(input_size); | ||
191 | vector<Bbox> result_boxes=decode(boxes,scores,landms,anchors,variances); | ||
192 | vector<Bbox> results=select_score(result_boxes,confidence_threshold,w_r,h_r); | ||
193 | |||
194 | // vector<Bbox> result_bboxes=vec2Bbox(boxes,w_r,h_r); | ||
195 | |||
196 | nms_cpu(results,nms_threshold); | ||
197 | if(is_bbox_process){ | ||
198 | vector<Bbox> res_bboxes=bbox_process(results,input_size[0],input_size[1]); | ||
199 | return res_bboxes; | ||
200 | |||
201 | }else{ | ||
202 | return results; | ||
203 | } | ||
204 | } | ||
205 | |||
206 | vector<Bbox> FaceRecognize::detect_image(Mat image){ | ||
207 | float w_r=float(640)/float(image.cols); | ||
208 | float h_r=float(640)/float(image.rows); | ||
209 | cv::Mat blob = cv::dnn::blobFromImage(image,resize_scale,Size(input_size[0],input_size[1]),Scalar(mean_data[0],mean_data[1],mean_data[2])); // 由图片加载数据 这里还可以进行缩放、归一化等预处理 | ||
210 | det_net.setInput(blob); // 设置模型输入 | ||
211 | std::vector<cv::Mat> det_netOutputImg; | ||
212 | det_net.forward(det_netOutputImg,det_net.getUnconnectedOutLayersNames()); // 推理出结果 | ||
213 | cv::Mat scores_ = det_netOutputImg[2].reshape(1,16800); | ||
214 | cv::Mat boxes_ = det_netOutputImg[0].reshape(1,16800); | ||
215 | cv::Mat landms_ = det_netOutputImg[1].reshape(1,16800); | ||
216 | std::vector<vector<float>> scores,boxes,landms; | ||
217 | |||
218 | scores=mat2vector(scores_); | ||
219 | boxes=mat2vector(boxes_); | ||
220 | landms=mat2vector(landms_); | ||
221 | |||
222 | |||
223 | vector<vector<float>> anchors=priorBox(input_size); | ||
224 | vector<Bbox> result_boxes=decode(boxes,scores,landms,anchors,variances); | ||
225 | vector<Bbox> results=select_score(result_boxes,confidence_threshold,w_r,h_r); | ||
226 | |||
227 | // vector<Bbox> result_bboxes=vec2Bbox(boxes,w_r,h_r); | ||
228 | |||
229 | nms_cpu(results,nms_threshold); | ||
230 | if(is_bbox_process){ | ||
231 | vector<Bbox> res_bboxes=bbox_process(results,image.cols,image.rows); | ||
232 | return res_bboxes; | ||
233 | |||
234 | }else{ | ||
235 | return results; | ||
236 | } | ||
237 | } | ||
238 | |||
239 | |||
240 | //人脸关键点部分 | ||
241 | vector<vector<float>> FaceRecognize::detect_landmarks(string image_path){ | ||
242 | cv::Mat image=cv::imread(image_path); | ||
243 | float w_r=image.cols/112; | ||
244 | float h_r=image.rows/112; | ||
245 | |||
246 | cv::Mat blob = cv::dnn::blobFromImage(image,1.0,Size(112,112)); // 由图片加载数据 这里还可以进行缩放、归一化等预处理 | ||
247 | landm_net.setInput(blob); // 设置模型输入 | ||
248 | std::vector<cv::Mat> landm_netOutputImg; | ||
249 | landm_net.forward(landm_netOutputImg,landm_net.getUnconnectedOutLayersNames()); // 推理出结果 | ||
250 | cv::Mat predict_landmarks = landm_netOutputImg[0].reshape(1,106); | ||
251 | vector<vector<float>> result_landmarks; | ||
252 | for(int i=0;i<predict_landmarks.rows;++i){ | ||
253 | vector<float> tmp_landm={predict_landmarks.at<float>(i,0)*w_r,predict_landmarks.at<float>(i,1)*h_r}; | ||
254 | result_landmarks.push_back(tmp_landm); | ||
255 | } | ||
256 | return result_landmarks; | ||
257 | } | ||
258 | |||
259 | vector<vector<float>> FaceRecognize::detect_image_landmarks(cv::Mat image){ | ||
260 | float w_r=image.cols/float(112); | ||
261 | float h_r=image.rows/float(112); | ||
262 | cv::Mat blob = cv::dnn::blobFromImage(image,1.0,Size(112,112)); // 由图片加载数据 这里还可以进行缩放、归一化等预处理 | ||
263 | landm_net.setInput(blob); // 设置模型输入 | ||
264 | std::vector<cv::Mat> landm_netOutputImg; | ||
265 | landm_net.forward(landm_netOutputImg,landm_net.getUnconnectedOutLayersNames()); // 推理出结果 | ||
266 | cv::Mat predict_landmarks = landm_netOutputImg[0].reshape(1,106); | ||
267 | vector<vector<float>> result_landmarks; | ||
268 | for(int i=0;i<predict_landmarks.rows;++i){ | ||
269 | vector<float> tmp_landm={predict_landmarks.at<float>(i,0)*w_r,predict_landmarks.at<float>(i,1)*h_r}; | ||
270 | result_landmarks.push_back(tmp_landm); | ||
271 | } | ||
272 | return result_landmarks; | ||
273 | } | ||
274 | |||
275 | |||
276 | |||
277 | //人脸识别部分 | ||
278 | |||
279 | cv::Mat FaceRecognize::meanAxis0(const cv::Mat &src) | ||
280 | { | ||
281 | int num = src.rows; | ||
282 | int dim = src.cols; | ||
283 | |||
284 | // x1 y1 | ||
285 | // x2 y2 | ||
286 | |||
287 | cv::Mat output(1,dim,CV_32F); | ||
288 | for(int i = 0 ; i < dim; i ++) | ||
289 | { | ||
290 | float sum = 0 ; | ||
291 | for(int j = 0 ; j < num ; j++) | ||
292 | { | ||
293 | sum+=src.at<float>(j,i); | ||
294 | } | ||
295 | output.at<float>(0,i) = sum/num; | ||
296 | } | ||
297 | |||
298 | return output; | ||
299 | } | ||
300 | |||
301 | cv::Mat FaceRecognize::elementwiseMinus(const cv::Mat &A,const cv::Mat &B) | ||
302 | { | ||
303 | cv::Mat output(A.rows,A.cols,A.type()); | ||
304 | |||
305 | assert(B.cols == A.cols); | ||
306 | if(B.cols == A.cols) | ||
307 | { | ||
308 | for(int i = 0 ; i < A.rows; i ++) | ||
309 | { | ||
310 | for(int j = 0 ; j < B.cols; j++) | ||
311 | { | ||
312 | output.at<float>(i,j) = A.at<float>(i,j) - B.at<float>(0,j); | ||
313 | } | ||
314 | } | ||
315 | } | ||
316 | return output; | ||
317 | } | ||
318 | |||
319 | cv::Mat FaceRecognize::varAxis0(const cv::Mat &src) | ||
320 | { | ||
321 | cv:Mat temp_ = elementwiseMinus(src,meanAxis0(src)); | ||
322 | cv::multiply(temp_ ,temp_ ,temp_ ); | ||
323 | return meanAxis0(temp_); | ||
324 | |||
325 | } | ||
326 | |||
327 | int FaceRecognize::MatrixRank(cv::Mat M) | ||
328 | { | ||
329 | Mat w, u, vt; | ||
330 | SVD::compute(M, w, u, vt); | ||
331 | Mat1b nonZeroSingularValues = w > 0.0001; | ||
332 | int rank = countNonZero(nonZeroSingularValues); | ||
333 | return rank; | ||
334 | |||
335 | } | ||
336 | |||
337 | cv::Mat FaceRecognize::similarTransform(cv::Mat src,cv::Mat dst) { | ||
338 | int num = src.rows; | ||
339 | int dim = src.cols; | ||
340 | cv::Mat src_mean = meanAxis0(src); | ||
341 | cv::Mat dst_mean = meanAxis0(dst); | ||
342 | cv::Mat src_demean = elementwiseMinus(src, src_mean); | ||
343 | cv::Mat dst_demean = elementwiseMinus(dst, dst_mean); | ||
344 | cv::Mat A = (dst_demean.t() * src_demean) / static_cast<float>(num); | ||
345 | cv::Mat d(dim, 1, CV_32F); | ||
346 | d.setTo(1.0f); | ||
347 | if (cv::determinant(A) < 0) { | ||
348 | d.at<float>(dim - 1, 0) = -1; | ||
349 | |||
350 | } | ||
351 | Mat T = cv::Mat::eye(dim + 1, dim + 1, CV_32F); | ||
352 | cv::Mat U, S, V; | ||
353 | SVD::compute(A, S,U, V); | ||
354 | |||
355 | // the SVD function in opencv differ from scipy . | ||
356 | |||
357 | |||
358 | int rank = MatrixRank(A); | ||
359 | if (rank == 0) { | ||
360 | assert(rank == 0); | ||
361 | |||
362 | } else if (rank == dim - 1) { | ||
363 | if (cv::determinant(U) * cv::determinant(V) > 0) { | ||
364 | T.rowRange(0, dim).colRange(0, dim) = U * V; | ||
365 | } else { | ||
366 | int s = d.at<float>(dim - 1, 0) = -1; | ||
367 | d.at<float>(dim - 1, 0) = -1; | ||
368 | |||
369 | T.rowRange(0, dim).colRange(0, dim) = U * V; | ||
370 | cv::Mat diag_ = cv::Mat::diag(d); | ||
371 | cv::Mat twp = diag_*V; //np.dot(np.diag(d), V.T) | ||
372 | Mat B = Mat::zeros(3, 3, CV_8UC1); | ||
373 | Mat C = B.diag(0); | ||
374 | T.rowRange(0, dim).colRange(0, dim) = U* twp; | ||
375 | d.at<float>(dim - 1, 0) = s; | ||
376 | } | ||
377 | } | ||
378 | else{ | ||
379 | cv::Mat diag_ = cv::Mat::diag(d); | ||
380 | cv::Mat twp = diag_*V.t(); //np.dot(np.diag(d), V.T) | ||
381 | cv::Mat res = U* twp; // U | ||
382 | T.rowRange(0, dim).colRange(0, dim) = -U.t()* twp; | ||
383 | } | ||
384 | cv::Mat var_ = varAxis0(src_demean); | ||
385 | float val = cv::sum(var_).val[0]; | ||
386 | cv::Mat res; | ||
387 | cv::multiply(d,S,res); | ||
388 | float scale = 1.0/val*cv::sum(res).val[0]; | ||
389 | T.rowRange(0, dim).colRange(0, dim) = - T.rowRange(0, dim).colRange(0, dim).t(); | ||
390 | cv::Mat temp1 = T.rowRange(0, dim).colRange(0, dim); // T[:dim, :dim] | ||
391 | cv::Mat temp2 = src_mean.t(); //src_mean.T | ||
392 | cv::Mat temp3 = temp1*temp2; // np.dot(T[:dim, :dim], src_mean.T) | ||
393 | cv::Mat temp4 = scale*temp3; | ||
394 | T.rowRange(0, dim).colRange(dim, dim+1)= -(temp4 - dst_mean.t()) ; | ||
395 | T.rowRange(0, dim).colRange(0, dim) *= scale; | ||
396 | return T; | ||
397 | } | ||
398 | |||
399 | Mat FaceRecognize::preprocess_face(Mat image,vector<vector<float>> land){ | ||
400 | Mat out; | ||
401 | cv::resize(image,out,Size(112,112)); | ||
402 | float default1[5][2] = { | ||
403 | {38.2946f, 51.6963f}, | ||
404 | {73.5318f, 51.6963f}, | ||
405 | {56.0252f, 71.7366f}, | ||
406 | {41.5493f, 92.3655f}, | ||
407 | {70.7299f, 92.3655f} | ||
408 | }; | ||
409 | |||
410 | float lands[5][2]={ | ||
411 | {float(land[0][0]*112.0)/float(image.cols),float(land[0][1]*112.0)/float(image.rows)}, | ||
412 | {float(land[1][0]*112.0)/float(image.cols),float(land[1][1]*112.0)/float(image.rows)}, | ||
413 | {float(land[2][0]*112.0)/float(image.cols),float(land[2][1]*112.0)/float(image.rows)}, | ||
414 | {float(land[3][0]*112.0)/float(image.cols),float(land[3][1]*112.0)/float(image.rows)}, | ||
415 | {float(land[4][0]*112.0)/float(image.cols),float(land[4][1]*112.0)/float(image.rows)} | ||
416 | }; | ||
417 | cv::Mat src(5,2,CV_32FC1,default1); | ||
418 | memcpy(src.data, default1, 2 * 5 * sizeof(float)); | ||
419 | cv::Mat dst(5,2,CV_32FC1,lands); | ||
420 | memcpy(dst.data, lands, 2 * 5 * sizeof(float)); | ||
421 | cv::Mat M = similarTransform(dst, src); | ||
422 | float M_[2][3]={ | ||
423 | {M.at<float>(0,0),M.at<float>(0,1),M.at<float>(0,2)}, | ||
424 | {M.at<float>(1,0),M.at<float>(1,1),M.at<float>(1,2)}, | ||
425 | }; | ||
426 | |||
427 | cv::Mat M__(2,3,CV_32FC1,M_); | ||
428 | cv::Mat align_image; | ||
429 | cv::warpAffine(out,align_image,M__,Size(112, 112)); | ||
430 | return align_image; | ||
431 | } | ||
432 | |||
433 | double FaceRecognize::getMold(const vector<double>& vec) | ||
434 | { | ||
435 | int n = vec.size(); | ||
436 | double sum = 0.0; | ||
437 | for (int i = 0; i < n; ++i) | ||
438 | sum += vec[i] * vec[i]; | ||
439 | return sqrt(sum); | ||
440 | } | ||
441 | |||
442 | double FaceRecognize::cos_distance(const vector<double>& base, const vector<double>& target) | ||
443 | { | ||
444 | int n = base.size(); | ||
445 | assert(n == target.size()); | ||
446 | double tmp = 0.0; | ||
447 | for (int i = 0; i < n; ++i) | ||
448 | tmp += base[i] * target[i]; | ||
449 | double simility = tmp / (getMold(base)*getMold(target)); | ||
450 | return simility; | ||
451 | } | ||
452 | |||
453 | double FaceRecognize::get_samilar(Mat image1,Mat image2){ | ||
454 | cv::Mat blob1 = cv::dnn::blobFromImage(image1,1.0/127.5,Size(112,112),Scalar(127.5,127.5,127.5),true); // 由图片加载数据 这里还可以进行缩放、归一化等预处理 | ||
455 | rec_net.setInput(blob1); // 设置模型输入 | ||
456 | std::vector<cv::Mat> rec_netOutputImg1; | ||
457 | rec_net.forward(rec_netOutputImg1,rec_net.getUnconnectedOutLayersNames()); // 推理出结果 | ||
458 | cv::Mat blob2 = cv::dnn::blobFromImage(image2,1.0/127.5,Size(112,112),Scalar(127.5,127.5,127.5),true); // 由图片加载数据 这里还可以进行缩放、归一化等预处理 | ||
459 | rec_net.setInput(blob2); // 设置模型输入 | ||
460 | std::vector<cv::Mat> rec_netOutputImg2; | ||
461 | rec_net.forward(rec_netOutputImg2,rec_net.getUnconnectedOutLayersNames()); // 推理出结果 | ||
462 | cv::Mat feature1=rec_netOutputImg1[0].reshape(1,512); | ||
463 | cv::Mat feature2=rec_netOutputImg2[0].reshape(1,512); | ||
464 | vector<double> v1,v2; | ||
465 | for(int i=0;i<feature1.rows;i++){ | ||
466 | v1.push_back((double)feature1.at<float>(i,0)); | ||
467 | v2.push_back((double)feature2.at<float>(i,0)); | ||
468 | } | ||
469 | double cos_score=cos_distance(v1,v2); | ||
470 | return cos_score; | ||
471 | } | ||
472 | |||
473 | |||
474 | //整体pipeline | ||
475 | bool FaceRecognize::face_recognize(string image1_path,string image2_path){ | ||
476 | bool result=false; | ||
477 | cv::Mat image1=cv::imread(image1_path); | ||
478 | cv::Mat image2=cv::imread(image2_path); | ||
479 | vector<Bbox> box1=detect_image(image1); | ||
480 | vector<Bbox> box2=detect_image(image2); | ||
481 | |||
482 | int max_box1=0,max_box2=0; | ||
483 | double max_area1=0,max_area2=0; | ||
484 | for(int i=0;i<box1.size();++i){ | ||
485 | double tmp_area1=(box1[i].ymax-box1[i].ymin)*(box1[i].xmax-box1[i].xmin); | ||
486 | if(tmp_area1>max_area1){ | ||
487 | max_box1=i; | ||
488 | max_area1=tmp_area1; | ||
489 | } | ||
490 | } | ||
491 | Rect rect1=Rect(box1[max_box1].xmin,box1[max_box1].ymin,box1[max_box1].xmax-box1[max_box1].xmin,box1[max_box1].ymax-box1[max_box1].ymin); | ||
492 | Mat face_area1=image1(rect1); | ||
493 | vector<vector<float>> landms1=detect_image_landmarks(face_area1); | ||
494 | vector<vector<float>> land1={ | ||
495 | {float(landms1[104][0]),float(landms1[104][1])}, | ||
496 | {float(landms1[105][0]),float(landms1[105][1])}, | ||
497 | {float(landms1[46][0]),float(landms1[46][1])}, | ||
498 | {float(landms1[84][0]),float(landms1[84][1])}, | ||
499 | {float(landms1[90][0]),float(landms1[90][1])} | ||
500 | }; | ||
501 | Mat align_resize_image1=preprocess_face(face_area1,land1); | ||
502 | for(int j=0;j<box2.size();++j){ | ||
503 | Rect rect2=Rect(box2[max_box2].xmin,box2[max_box2].ymin,box2[max_box2].xmax-box2[max_box2].xmin,box2[max_box2].ymax-box2[max_box2].ymin); | ||
504 | Mat face_area2=image2(rect2); | ||
505 | vector<vector<float>> landms2=detect_image_landmarks(face_area2); | ||
506 | vector<vector<float>> land2={ | ||
507 | {float(landms2[104][0]),float(landms2[104][1])}, | ||
508 | {float(landms2[105][0]),float(landms2[105][1])}, | ||
509 | {float(landms2[46][0]),float(landms2[46][1])}, | ||
510 | {float(landms2[84][0]),float(landms2[84][1])}, | ||
511 | {float(landms2[90][0]),float(landms2[90][1])} | ||
512 | }; | ||
513 | Mat align_resize_image2=preprocess_face(face_area2,land2); | ||
514 | double samilar_score=get_samilar(align_resize_image1,align_resize_image2); | ||
515 | if(samilar_score>face_recongnize_thr){ | ||
516 | result=true; | ||
517 | } | ||
518 | } | ||
519 | return result; | ||
520 | } | ||
521 | |||
522 | bool FaceRecognize::face_recognize_image(Mat image1,Mat image2){ | ||
523 | bool result=false; | ||
524 | vector<Bbox> box1=detect_image(image1); | ||
525 | vector<Bbox> box2=detect_image(image2); | ||
526 | |||
527 | int max_box1=0,max_box2=0; | ||
528 | double max_area1=0,max_area2=0; | ||
529 | for(int i=0;i<box1.size();++i){ | ||
530 | double tmp_area1=(box1[i].ymax-box1[i].ymin)*(box1[i].xmax-box1[i].xmin); | ||
531 | if(tmp_area1>max_area1){ | ||
532 | max_box1=i; | ||
533 | max_area1=tmp_area1; | ||
534 | } | ||
535 | } | ||
536 | Rect rect1=Rect(box1[max_box1].xmin,box1[max_box1].ymin,box1[max_box1].xmax-box1[max_box1].xmin,box1[max_box1].ymax-box1[max_box1].ymin); | ||
537 | Mat face_area1=image1(rect1); | ||
538 | vector<vector<float>> landms1=detect_image_landmarks(face_area1); | ||
539 | vector<vector<float>> land1={ | ||
540 | {float(landms1[104][0]),float(landms1[104][1])}, | ||
541 | {float(landms1[105][0]),float(landms1[105][1])}, | ||
542 | {float(landms1[46][0]),float(landms1[46][1])}, | ||
543 | {float(landms1[84][0]),float(landms1[84][1])}, | ||
544 | {float(landms1[90][0]),float(landms1[90][1])} | ||
545 | }; | ||
546 | Mat align_resize_image1=preprocess_face(face_area1,land1); | ||
547 | for(int j=0;j<box2.size();++j){ | ||
548 | Rect rect2=Rect(box2[max_box2].xmin,box2[max_box2].ymin,box2[max_box2].xmax-box2[max_box2].xmin,box2[max_box2].ymax-box2[max_box2].ymin); | ||
549 | Mat face_area2=image2(rect2); | ||
550 | vector<vector<float>> landms2=detect_image_landmarks(face_area2); | ||
551 | vector<vector<float>> land2={ | ||
552 | {float(landms2[104][0]),float(landms2[104][1])}, | ||
553 | {float(landms2[105][0]),float(landms2[105][1])}, | ||
554 | {float(landms2[46][0]),float(landms2[46][1])}, | ||
555 | {float(landms2[84][0]),float(landms2[84][1])}, | ||
556 | {float(landms2[90][0]),float(landms2[90][1])} | ||
557 | }; | ||
558 | Mat align_resize_image2=preprocess_face(face_area2,land2); | ||
559 | double samilar_score=get_samilar(align_resize_image1,align_resize_image2); | ||
560 | if(samilar_score>face_recongnize_thr){ | ||
561 | result=true; | ||
562 | } | ||
563 | } | ||
564 | return result; | ||
565 | } | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
facerecognize.h
0 → 100644
1 | #ifndef FACERECOGNIZE_H | ||
2 | #define FACERECOGNIZE_H | ||
3 | #include<opencv2/opencv.hpp> | ||
4 | |||
5 | using namespace std; | ||
6 | using namespace cv; | ||
7 | struct Bbox{ | ||
8 | float xmin; | ||
9 | float ymin; | ||
10 | float xmax; | ||
11 | float ymax; | ||
12 | float score; | ||
13 | float x1; | ||
14 | float y1; | ||
15 | float x2; | ||
16 | float y2; | ||
17 | float x3; | ||
18 | float y3; | ||
19 | float x4; | ||
20 | float y4; | ||
21 | float x5; | ||
22 | float y5; | ||
23 | }; | ||
24 | class FaceRecognize{ | ||
25 | |||
26 | private: | ||
27 | //是否使用gpu? | ||
28 | bool use_gpu=true; | ||
29 | |||
30 | //人脸检测 | ||
31 | vector<float> input_size={640,640}; | ||
32 | vector<float> variances={0.1,0.2}; | ||
33 | vector<float> mean_data={104,117,128}; | ||
34 | float confidence_threshold = 0.5; //人脸检测阈值 | ||
35 | float keep_top_k = 100; | ||
36 | float vis_threshold = 0.5; | ||
37 | float nms_threshold = 0.4; | ||
38 | float resize_scale = 1.0; | ||
39 | bool is_bbox_process=true; //人脸外扩 | ||
40 | |||
41 | //人脸识别 | ||
42 | double face_recongnize_thr = 0.2; //人脸相似度阈值 | ||
43 | cv::dnn::Net det_net,landm_net,rec_net; | ||
44 | |||
45 | |||
46 | public: | ||
47 | FaceRecognize(); | ||
48 | FaceRecognize(string face_det_model_path,string face_landm_model_path,string face_rec_model_path){ | ||
49 | det_net = cv::dnn::readNetFromONNX(face_det_model_path); | ||
50 | landm_net = cv::dnn::readNetFromONNX(face_landm_model_path); | ||
51 | rec_net = cv::dnn::readNetFromONNX(face_rec_model_path); | ||
52 | if(use_gpu){ | ||
53 | det_net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); | ||
54 | det_net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); | ||
55 | landm_net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); | ||
56 | landm_net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); | ||
57 | rec_net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); | ||
58 | rec_net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); | ||
59 | } | ||
60 | |||
61 | } | ||
62 | //人脸检测部分 | ||
63 | vector<vector<float>> priorBox(vector<float> image_size); | ||
64 | vector<Bbox> decode(vector<vector<float>> loc,vector<vector<float>> score,vector<vector<float>>pre,vector<vector<float>> priors,vector<float> variances); | ||
65 | void nms_cpu(std::vector<Bbox> &bboxes, float threshold); | ||
66 | vector<vector<float>> mat2vector(Mat mat); | ||
67 | vector<Bbox> select_score(vector<Bbox> bboxes,float threshold,float w_r,float h_r); | ||
68 | vector<Bbox> bbox_process(vector<Bbox> bboxes,float frame_w,float frame_h); | ||
69 | vector<Bbox> detect(string image_path); | ||
70 | vector<Bbox> detect_image(Mat image); | ||
71 | |||
72 | |||
73 | //人脸关键点部分 | ||
74 | vector<vector<float>> detect_landmarks(string image_path); | ||
75 | vector<vector<float>> detect_image_landmarks(cv::Mat image); | ||
76 | |||
77 | |||
78 | //人脸识部分 | ||
79 | cv::Mat meanAxis0(const cv::Mat &src); | ||
80 | cv::Mat elementwiseMinus(const cv::Mat &A,const cv::Mat &B); | ||
81 | cv::Mat varAxis0(const cv::Mat &src); | ||
82 | int MatrixRank(cv::Mat M); | ||
83 | cv::Mat similarTransform(cv::Mat src,cv::Mat dst); | ||
84 | Mat preprocess_face(Mat image,vector<vector<float>> land); | ||
85 | double getMold(const vector<double>& vec); | ||
86 | double cos_distance(const vector<double>& base, const vector<double>& target); | ||
87 | double get_samilar(Mat image1,Mat image2); | ||
88 | |||
89 | |||
90 | //整体 | ||
91 | bool face_recognize(string image1_path,string image2_path); | ||
92 | bool face_recognize_image(Mat image1,Mat image2); | ||
93 | }; | ||
94 | |||
95 | |||
96 | #endif | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
libfacerecognize.so
0 → 100755
No preview for this file type
main
0 → 100755
No preview for this file type
main.cpp
0 → 100644
1 | #include"facerecognize.h" | ||
2 | #include "ctime" | ||
3 | |||
4 | int main(){ | ||
5 | FaceRecognize face_rec=FaceRecognize("/home/situ/qfs/sdk_project/mobile_face_recognize/det_face_retina_torch_1.4_v0.0.2.onnx","/home/situ/qfs/sdk_project/mobile_face_recognize/det_landmarks_106_v0.0.1.onnx","/home/situ/qfs/sdk_project/mobile_face_recognize/ms1mv3_r18.onnx"); | ||
6 | clock_t start, end; | ||
7 | cv::Mat image1=cv::imread("/data/face_recognize/pipeline_test/59297ec0094211ecaf3d00163e514671/310faceImageContent163029410817774.jpg"); | ||
8 | cv::Mat image2=cv::imread("/data/face_recognize/pipeline_test/59297ec0094211ecaf3d00163e514671/310cardImageContent163029410836583.jpg"); | ||
9 | cout<<"start"<<endl; | ||
10 | start = clock(); | ||
11 | bool result=face_rec.face_recognize_image(image1,image2); | ||
12 | end = clock(); | ||
13 | double elapsedTime = static_cast<double>(end-start) / CLOCKS_PER_SEC ; | ||
14 | |||
15 | printf("PROCESSING TIME: %f",elapsedTime); | ||
16 | |||
17 | } |
ms1mv3_r18.onnx
0 → 100644
This file is too large to display.
-
Please register or sign in to post a comment