_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/openimages_detection.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_1x.py' ] model = dict( bbox_head=dict( num_classes=601, anchor_generator=dict(basesize_ratio_range=(0.2, 0.9)))) # dataset settings dataset_type = 'OpenImagesDataset' data_root = 'data/OpenImages/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True, normed_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(300, 300), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='RandomFlip', flip_ratio=0.5), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(300, 300), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, # using 32 GPUS while training. workers_per_gpu=0, # workers_per_gpu > 0 may occur out of memory train=dict( _delete_=True, type='RepeatDataset', times=3, dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/oidv6-train-annotations-bbox.csv', img_prefix=data_root + 'OpenImages/train/', label_file=data_root + 'annotations/class-descriptions-boxable.csv', hierarchy_file=data_root + 'annotations/bbox_labels_600_hierarchy.json', pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.04, momentum=0.9, weight_decay=5e-4) optimizer_config = dict() # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=20000, warmup_ratio=0.001, step=[8, 11])