ocr_yolo triton-inference-server
0 parents
Showing
11 changed files
with
737 additions
and
0 deletions
.gitignore
0 → 100644
OCR_Engine @ 3dddc11a
1 | Subproject commit 3dddc11a8a1d369ca4fbd0b69e4e21e6af81cc4c |
README.md
0 → 100644
1 | ## OCR+yolov5 triton-inference-server服务 | ||
2 | |||
3 | 1.使用docker启动triton服务 | ||
4 | |||
5 | sudo docker run --gpus="device=0" --rm -p 8000:8000 -p 8001:8001 -p 8002:8002 -v /home/situ/qfs/triton_inference_server/demo/model_repository:/models nvcr.io/nvidia/tritonserver:21.10-py3 tritonserver --model-repository=/models | ||
6 | |||
7 | 2.分别启动OCR和yolov5的web服务 | ||
8 | |||
9 | cd OCR_Engine/api | ||
10 | python ocr_engine_server.py | ||
11 | |||
12 | cd yolov5_onnx_demo/api | ||
13 | python yolov5_onnx_server.py | ||
14 | |||
15 | 3.pipeline测试 | ||
16 | |||
17 | python triton_pipeline.py | ||
18 |
bank_ocr_inference.py
0 → 100644
1 | import base64 | ||
2 | import os | ||
3 | import time | ||
4 | |||
5 | import cv2 | ||
6 | import numpy as np | ||
7 | import requests | ||
8 | import tqdm | ||
9 | |||
10 | |||
11 | def image_to_base64(image): | ||
12 | image = cv2.imencode('.png', image)[1] | ||
13 | return image | ||
14 | |||
15 | |||
16 | def path_to_file(file_path): | ||
17 | f = open(file_path, 'rb') | ||
18 | return f | ||
19 | |||
20 | |||
21 | # 流水OCR接口 | ||
22 | def bill_ocr(image): | ||
23 | f = image_to_base64(image) | ||
24 | resp = requests.post(url=r'http://192.168.10.11:9001/gen_ocr', files={'file': f}) | ||
25 | results = resp.json() | ||
26 | ocr_results = results['ocr_results'] | ||
27 | return ocr_results | ||
28 | |||
29 | |||
30 | # 提取民生银行信息 | ||
31 | def extract_minsheng_info(ocr_results): | ||
32 | name_prefix = '客户姓名:' | ||
33 | account_prefix = '客户账号:' | ||
34 | results = [] | ||
35 | for value in ocr_results.values(): | ||
36 | if name_prefix in value[1]: | ||
37 | if name_prefix == value[1]: | ||
38 | tmp_value, max_dis = [], 999999 | ||
39 | top_right_x = value[0][2] | ||
40 | top_right_y = value[0][3] | ||
41 | for tmp in ocr_results.values(): | ||
42 | if tmp[1] != name_prefix: | ||
43 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2 and abs( | ||
44 | tmp[0][0] - top_right_x) < max_dis: | ||
45 | tmp_value = tmp | ||
46 | max_dis = abs(tmp[0][0] - top_right_x) | ||
47 | else: | ||
48 | continue | ||
49 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
50 | tmp_value[0][5], | ||
51 | value[0][6], value[0][7]] | ||
52 | results.append([value[1] + tmp_value[1], new_position]) | ||
53 | else: | ||
54 | results.append([value[1], value[0]]) | ||
55 | if account_prefix in value[1]: | ||
56 | if account_prefix == value[1]: | ||
57 | tmp_value, max_dis = [], 999999 | ||
58 | top_right_x = value[0][2] | ||
59 | top_right_y = value[0][3] | ||
60 | for tmp in ocr_results.values(): | ||
61 | if tmp[1] != account_prefix: | ||
62 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2 and abs( | ||
63 | tmp[0][0] - top_right_x) < max_dis: | ||
64 | tmp_value = tmp | ||
65 | max_dis = abs(tmp[0][0] - top_right_x) | ||
66 | else: | ||
67 | continue | ||
68 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
69 | tmp_value[0][5], | ||
70 | value[0][6], value[0][7]] | ||
71 | results.append([value[1] + tmp_value[1], new_position]) | ||
72 | else: | ||
73 | results.append([value[1], value[0]]) | ||
74 | return results | ||
75 | |||
76 | |||
77 | # 提取工商银行信息 | ||
78 | def extract_gongshang_info(ocr_results): | ||
79 | name_prefix = '户名:' | ||
80 | account_prefix = '卡号:' | ||
81 | results = [] | ||
82 | for value in ocr_results.values(): | ||
83 | if name_prefix in value[1]: | ||
84 | if name_prefix == value[1]: | ||
85 | tmp_value, max_dis = [], 999999 | ||
86 | top_right_x = value[0][2] | ||
87 | top_right_y = value[0][3] | ||
88 | for tmp in ocr_results.values(): | ||
89 | if tmp[1] != name_prefix: | ||
90 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2 and abs( | ||
91 | tmp[0][0] - top_right_x) < max_dis: | ||
92 | tmp_value = tmp | ||
93 | max_dis = abs(tmp[0][0] - top_right_x) | ||
94 | else: | ||
95 | continue | ||
96 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
97 | tmp_value[0][5], | ||
98 | value[0][6], value[0][7]] | ||
99 | results.append([value[1] + tmp_value[1], new_position]) | ||
100 | else: | ||
101 | results.append([value[1], value[0]]) | ||
102 | if account_prefix in value[1]: | ||
103 | if account_prefix == value[1]: | ||
104 | tmp_value, max_dis = [], 999999 | ||
105 | top_right_x = value[0][2] | ||
106 | top_right_y = value[0][3] | ||
107 | for tmp in ocr_results.values(): | ||
108 | if tmp[1] != account_prefix: | ||
109 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2 and abs( | ||
110 | tmp[0][0] - top_right_x) < max_dis: | ||
111 | tmp_value = tmp | ||
112 | max_dis = abs(tmp[0][0] - top_right_x) | ||
113 | else: | ||
114 | continue | ||
115 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
116 | tmp_value[0][5], | ||
117 | value[0][6], value[0][7]] | ||
118 | results.append([value[1] + tmp_value[1], new_position]) | ||
119 | else: | ||
120 | results.append([value[1], value[0]]) | ||
121 | return results | ||
122 | |||
123 | |||
124 | # 提取中国银行信息 | ||
125 | def extract_zhongguo_info(ocr_results): | ||
126 | name_prefix = '客户姓名:' | ||
127 | account_prefix = '借记卡号:' | ||
128 | results = [] | ||
129 | for value in ocr_results.values(): | ||
130 | if name_prefix in value[1]: | ||
131 | if name_prefix == value[1]: | ||
132 | tmp_value, max_dis = [], 999999 | ||
133 | top_right_x = value[0][2] | ||
134 | top_right_y = value[0][3] | ||
135 | for tmp in ocr_results.values(): | ||
136 | if tmp[1] != name_prefix: | ||
137 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2 and abs( | ||
138 | tmp[0][0] - top_right_x) < max_dis: | ||
139 | tmp_value = tmp | ||
140 | max_dis = abs(tmp[0][0] - top_right_x) | ||
141 | else: | ||
142 | continue | ||
143 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
144 | tmp_value[0][5], | ||
145 | value[0][6], value[0][7]] | ||
146 | results.append([value[1] + tmp_value[1], new_position]) | ||
147 | else: | ||
148 | results.append([value[1], value[0]]) | ||
149 | if account_prefix in value[1]: | ||
150 | if account_prefix == value[1]: | ||
151 | tmp_value, max_dis = [], 999999 | ||
152 | top_right_x = value[0][2] | ||
153 | top_right_y = value[0][3] | ||
154 | for tmp in ocr_results.values(): | ||
155 | if tmp[1] != account_prefix: | ||
156 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2 and abs( | ||
157 | tmp[0][0] - top_right_x) < max_dis: | ||
158 | tmp_value = tmp | ||
159 | max_dis = abs(tmp[0][0] - top_right_x) | ||
160 | else: | ||
161 | continue | ||
162 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
163 | tmp_value[0][5], | ||
164 | value[0][6], value[0][7]] | ||
165 | results.append([value[1] + tmp_value[1], new_position]) | ||
166 | else: | ||
167 | results.append([value[1], value[0]]) | ||
168 | return results | ||
169 | |||
170 | |||
171 | # 提取建设银行信息 | ||
172 | def extract_jianshe_info(ocr_results): | ||
173 | name_prefixes = ['客户名称:', '户名:'] | ||
174 | account_prefixes = ['卡号/账号:', '卡号:'] | ||
175 | results = [] | ||
176 | for value in ocr_results.values(): | ||
177 | for name_prefix in name_prefixes: | ||
178 | if name_prefix in value[1]: | ||
179 | if name_prefix == value[1]: | ||
180 | tmp_value, max_dis = [], 999999 | ||
181 | top_right_x = value[0][2] | ||
182 | top_right_y = value[0][3] | ||
183 | for tmp in ocr_results.values(): | ||
184 | if tmp[1] != name_prefix: | ||
185 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2 and abs( | ||
186 | tmp[0][0] - top_right_x) < max_dis: | ||
187 | tmp_value = tmp | ||
188 | max_dis = abs(tmp[0][0] - top_right_x) | ||
189 | else: | ||
190 | continue | ||
191 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
192 | tmp_value[0][5], | ||
193 | value[0][6], value[0][7]] | ||
194 | results.append([value[1] + tmp_value[1], new_position]) | ||
195 | break | ||
196 | else: | ||
197 | results.append([value[1], value[0]]) | ||
198 | break | ||
199 | for account_prefix in account_prefixes: | ||
200 | if account_prefix in value[1]: | ||
201 | if account_prefix == value[1]: | ||
202 | tmp_value, max_dis = [], 999999 | ||
203 | top_right_x = value[0][2] | ||
204 | top_right_y = value[0][3] | ||
205 | for tmp in ocr_results.values(): | ||
206 | if tmp[1] != account_prefix: | ||
207 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2 and abs( | ||
208 | tmp[0][0] - top_right_x) < max_dis: | ||
209 | tmp_value = tmp | ||
210 | max_dis = abs(tmp[0][0] - top_right_x) | ||
211 | else: | ||
212 | continue | ||
213 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
214 | tmp_value[0][5], | ||
215 | value[0][6], value[0][7]] | ||
216 | results.append([value[1] + tmp_value[1], new_position]) | ||
217 | break | ||
218 | else: | ||
219 | results.append([value[1], value[0]]) | ||
220 | break | ||
221 | return results | ||
222 | |||
223 | |||
224 | # 提取农业银行信息(比较复杂,目前训练的版式都支持) | ||
225 | def extract_nongye_info(ocr_results): | ||
226 | name_prefixes = ['客户名:', '户名:'] | ||
227 | account_prefixes = ['账号:'] | ||
228 | results = [] | ||
229 | is_account = True | ||
230 | for value in ocr_results.values(): | ||
231 | for name_prefix in name_prefixes: | ||
232 | if name_prefix in value[1] and account_prefixes[0][:-1] not in value[1]: | ||
233 | if name_prefix == value[1]: | ||
234 | tmp_value, max_dis = [], 999999 | ||
235 | top_right_x = value[0][2] | ||
236 | top_right_y = value[0][3] | ||
237 | for tmp in ocr_results.values(): | ||
238 | if tmp[1] != name_prefix: | ||
239 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2 and abs( | ||
240 | tmp[0][0] - top_right_x) < max_dis: | ||
241 | tmp_value = tmp | ||
242 | max_dis = abs(tmp[0][0] - top_right_x) | ||
243 | else: | ||
244 | continue | ||
245 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
246 | tmp_value[0][5], | ||
247 | value[0][6], value[0][7]] | ||
248 | results.append([value[1] + tmp_value[1], new_position]) | ||
249 | break | ||
250 | else: | ||
251 | results.append([value[1], value[0]]) | ||
252 | break | ||
253 | if name_prefix in value[1] and account_prefixes[0][:-1] in value[1] and len(value[1].split(":")[0]) <= 5: | ||
254 | is_account = False | ||
255 | if len(value[1]) == 5: | ||
256 | tmp_value, max_dis = [], 999999 | ||
257 | top_right_x = value[0][2] | ||
258 | top_right_y = value[0][3] | ||
259 | tmp_info = {} | ||
260 | for tmp in ocr_results.values(): | ||
261 | if tmp[1] != value[1]: | ||
262 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2: | ||
263 | tmp_info[abs(tmp[0][0] - top_right_x)] = tmp | ||
264 | else: | ||
265 | continue | ||
266 | tmp_info_id = sorted(tmp_info.keys()) | ||
267 | if not tmp_info[tmp_info_id[0]][1].isdigit() and len(tmp_info[tmp_info_id[0]][1]) > 19: | ||
268 | tmp_value = tmp_info[tmp_info_id[0]] | ||
269 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
270 | tmp_value[0][5], | ||
271 | value[0][6], value[0][7]] | ||
272 | results.append([value[1] + tmp_value[1], new_position]) | ||
273 | if tmp_info[tmp_info_id[0]][1].isdigit(): | ||
274 | tmp_value = tmp_info[tmp_info_id[1]] | ||
275 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
276 | tmp_value[0][5], | ||
277 | value[0][6], value[0][7]] | ||
278 | results.append([value[1] + tmp_value[1], new_position]) | ||
279 | break | ||
280 | elif len(value[1]) < 25: | ||
281 | tmp_info = {} | ||
282 | top_right_x = value[0][2] | ||
283 | top_right_y = value[0][3] | ||
284 | for tmp in ocr_results.values(): | ||
285 | if tmp[1] != value[1]: | ||
286 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2: | ||
287 | tmp_info[abs(tmp[0][0] - top_right_x)] = tmp | ||
288 | else: | ||
289 | continue | ||
290 | tmp_info_id = sorted(tmp_info.keys()) | ||
291 | tmp_value = tmp_info[tmp_info_id[0]] | ||
292 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
293 | tmp_value[0][5], | ||
294 | value[0][6], value[0][7]] | ||
295 | results.append([value[1] + tmp_value[1], new_position]) | ||
296 | break | ||
297 | else: | ||
298 | results.append([value[1], value[0]]) | ||
299 | break | ||
300 | if is_account: | ||
301 | for account_prefix in account_prefixes: | ||
302 | if account_prefix in value[1]: | ||
303 | if account_prefix == value[1]: | ||
304 | tmp_value, max_dis = [], 999999 | ||
305 | top_right_x = value[0][2] | ||
306 | top_right_y = value[0][3] | ||
307 | for tmp in ocr_results.values(): | ||
308 | if tmp[1] != account_prefix: | ||
309 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2 and abs( | ||
310 | tmp[0][0] - top_right_x) < max_dis: | ||
311 | tmp_value = tmp | ||
312 | max_dis = abs(tmp[0][0] - top_right_x) | ||
313 | else: | ||
314 | continue | ||
315 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
316 | tmp_value[0][5], | ||
317 | value[0][6], value[0][7]] | ||
318 | results.append([value[1] + tmp_value[1], new_position]) | ||
319 | break | ||
320 | else: | ||
321 | results.append([value[1], value[0]]) | ||
322 | break | ||
323 | else: | ||
324 | break | ||
325 | return results | ||
326 | |||
327 | |||
328 | # 提取银行流水信息总接口 | ||
329 | def extract_bank_info(ocr_results): | ||
330 | results = [] | ||
331 | for value in ocr_results.values(): | ||
332 | if value[1].__contains__('建设'): | ||
333 | results = extract_jianshe_info(ocr_results) | ||
334 | break | ||
335 | elif value[1].__contains__('民生'): | ||
336 | results = extract_minsheng_info(ocr_results) | ||
337 | break | ||
338 | elif value[1].__contains__('农业'): | ||
339 | results = extract_nongye_info(ocr_results) | ||
340 | break | ||
341 | elif value[1].__contains__('中国银行'): | ||
342 | results = extract_zhongguo_info(ocr_results) | ||
343 | break | ||
344 | elif value[1].__contains__('邮政'): | ||
345 | results = extract_youchu_info(ocr_results) | ||
346 | if len(results) == 0: | ||
347 | results = extract_gongshang_info(ocr_results) | ||
348 | |||
349 | return results | ||
350 | |||
351 | |||
352 | def extract_youchu_info(ocr_results): | ||
353 | name_prefixes = ['户名:'] | ||
354 | account_prefixes = ['账号:', '卡号:'] | ||
355 | results = [] | ||
356 | for value in ocr_results.values(): | ||
357 | for name_prefix in name_prefixes: | ||
358 | if name_prefix in value[1]: | ||
359 | if name_prefix == value[1]: | ||
360 | tmp_value, max_dis = [], 999999 | ||
361 | top_right_x = value[0][2] | ||
362 | top_right_y = value[0][3] | ||
363 | for tmp in ocr_results.values(): | ||
364 | if tmp[1] != name_prefix: | ||
365 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2 and abs( | ||
366 | tmp[0][0] - top_right_x) < max_dis: | ||
367 | tmp_value = tmp | ||
368 | max_dis = abs(tmp[0][0] - top_right_x) | ||
369 | else: | ||
370 | continue | ||
371 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
372 | tmp_value[0][5], | ||
373 | value[0][6], value[0][7]] | ||
374 | results.append([value[1] + tmp_value[1], new_position]) | ||
375 | break | ||
376 | else: | ||
377 | results.append([value[1], value[0]]) | ||
378 | break | ||
379 | for account_prefix in account_prefixes: | ||
380 | if account_prefix in value[1]: | ||
381 | if account_prefix == value[1]: | ||
382 | tmp_value, max_dis = [], 999999 | ||
383 | top_right_x = value[0][2] | ||
384 | top_right_y = value[0][3] | ||
385 | for tmp in ocr_results.values(): | ||
386 | if tmp[1] != account_prefix: | ||
387 | if abs(tmp[0][1] - top_right_y) < abs(value[0][3] - value[0][5]) / 2 and abs( | ||
388 | tmp[0][0] - top_right_x) < max_dis: | ||
389 | tmp_value = tmp | ||
390 | max_dis = abs(tmp[0][0] - top_right_x) | ||
391 | else: | ||
392 | continue | ||
393 | new_position = [value[0][0], value[0][1], tmp_value[0][2], tmp_value[0][3], tmp_value[0][4], | ||
394 | tmp_value[0][5], | ||
395 | value[0][6], value[0][7]] | ||
396 | results.append([value[1] + tmp_value[1], new_position]) | ||
397 | break | ||
398 | else: | ||
399 | results.append([value[1], value[0]]) | ||
400 | break | ||
401 | return results | ||
402 | |||
403 | |||
404 | if __name__ == '__main__': | ||
405 | img = cv2.imread('/home/situ/下载/邮储对账单/飞书20221020-155202.jpg') | ||
406 | ocr_results = bill_ocr(img) | ||
407 | results = extract_youchu_info(ocr_results) | ||
408 | print(results) | ||
409 | # path = '/data/situ_invoice_bill_data/new_data/qfs_bank_bill_data/minsheng/authentic/images/val' | ||
410 | # save_path='/data/situ_invoice_bill_data/new_data/results' | ||
411 | # bank='minsheng' | ||
412 | # if not os.path.exists(os.path.join(save_path,bank)): | ||
413 | # os.makedirs(os.path.join(save_path,bank)) | ||
414 | # save_path=os.path.join(save_path,bank) | ||
415 | # for j in tqdm.tqdm(os.listdir(path)): | ||
416 | # # if True: | ||
417 | # img=cv2.imread(os.path.join(path,j)) | ||
418 | # # img = cv2.imread('/data/situ_invoice_bill_data/new_data/results/nongye/6/_1597382769.6449914page_23_img_0.jpg') | ||
419 | # st = time.time() | ||
420 | # ocr_result = bill_ocr(img) | ||
421 | # et1 = time.time() | ||
422 | # result = extract_bank_info(ocr_result) | ||
423 | # et2 = time.time() | ||
424 | # for i in range(len(result)): | ||
425 | # cv2.rectangle(img, (result[i][1][0], result[i][1][1]), (result[i][1][4], result[i][1][5]), (0, 0, 255), 2) | ||
426 | # # cv2.imshow('img',img) | ||
427 | # # cv2.waitKey(0) | ||
428 | # cv2.imwrite(os.path.join(save_path,j),img) | ||
429 | # print('spend:{} ocr:{} extract:{}'.format(et2 - st, et1 - st, et2 - et1)) |
triton_pipeline.py
0 → 100644
1 | import base64 | ||
2 | import json | ||
3 | from bank_ocr_inference import * | ||
4 | |||
5 | |||
6 | def enlarge_position(box): | ||
7 | x1, y1, x2, y2 = box | ||
8 | w, h = abs(x2 - x1), abs(y2 - y1) | ||
9 | y1, y2 = max(y1 - h // 3, 0), y2 + h // 3 | ||
10 | x1, x2 = max(x1 - w // 8, 0), x2 + w // 8 | ||
11 | return [x1, y1, x2, y2] | ||
12 | |||
13 | |||
14 | def path_base64(file_path): | ||
15 | f = open(file_path, 'rb') | ||
16 | file64 = base64.b64encode(f.read()) # image 64 bytes 类型 | ||
17 | file64 = file64.decode('utf-8') | ||
18 | return file64 | ||
19 | |||
20 | |||
21 | def bgr_base64(image): | ||
22 | _, img64 = cv2.imencode('.jpg', image) | ||
23 | img64 = base64.b64encode(img64) | ||
24 | return img64.decode('utf-8') | ||
25 | |||
26 | |||
27 | def base64_bgr(img64): | ||
28 | str_img64 = base64.b64decode(img64) | ||
29 | image = np.frombuffer(str_img64, np.uint8) | ||
30 | image = cv2.imdecode(image, cv2.IMREAD_COLOR) | ||
31 | return image | ||
32 | |||
33 | |||
34 | def tamper_detect_(image): | ||
35 | img64 = bgr_base64(image) | ||
36 | resp = requests.post(url=r'http://192.168.10.11:8009/tamper_det', data=json.dumps({'img': img64})) | ||
37 | results = resp.json() | ||
38 | return results | ||
39 | |||
40 | |||
41 | if __name__ == '__main__': | ||
42 | image = cv2.imread( | ||
43 | '/data/situ_invoice_bill_data/银行流水样本/普通打印-部分格线-竖版-农业银行-8列/_1594626974.367834page_20_img_0.jpg') | ||
44 | st = time.time() | ||
45 | ocr_results = bill_ocr(image) | ||
46 | et1 = time.time() | ||
47 | info_results = extract_bank_info(ocr_results) | ||
48 | et2 = time.time() | ||
49 | tamper_results = [] | ||
50 | if len(info_results) != 0: | ||
51 | for info_result in info_results: | ||
52 | box = [info_result[1][0], info_result[1][1], info_result[1][4], info_result[1][5]] | ||
53 | x1, y1, x2, y2 = enlarge_position(box) | ||
54 | # x1, y1, x2, y2 = box | ||
55 | info_image = image[y1:y2, x1:x2, :] | ||
56 | results = tamper_detect_(info_image) | ||
57 | print(results) | ||
58 | if len(results['results']) != 0: | ||
59 | for res in results['results']: | ||
60 | cx = int(res[0]) | ||
61 | cy = int(res[1]) | ||
62 | width = int(res[2]) | ||
63 | height = int(res[3]) | ||
64 | left = cx - width // 2 | ||
65 | top = cy - height // 2 | ||
66 | absolute_position = [x1 + left, y1 + top, x1 + left + width, y1 + top + height] | ||
67 | # absolute_position = [x1+left, y1+top, x2, y2] | ||
68 | tamper_results.append(absolute_position) | ||
69 | et3 = time.time() | ||
70 | print(tamper_results) | ||
71 | |||
72 | print(f'all time:{et3 - st} ocr time:{et1 - st} extract info time:{et2 - et1} yolo time:{et3 - et2}') | ||
73 | for i in tamper_results: | ||
74 | cv2.rectangle(image, tuple(i[:2]), tuple(i[2:]), (0, 0, 255), 2) | ||
75 | cv2.imshow('info', image) | ||
76 | cv2.waitKey(0) |
yolov5_onnx_demo/api/yolov5_onnx_server.py
0 → 100644
1 | import base64 | ||
2 | |||
3 | import cv2 | ||
4 | import numpy as np | ||
5 | from sanic import Sanic | ||
6 | from sanic.response import json | ||
7 | from yolov5_onnx_demo.model.yolov5_infer import * | ||
8 | |||
9 | |||
10 | def base64_to_bgr(bs64): | ||
11 | img_data = base64.b64decode(bs64) | ||
12 | img_arr = np.fromstring(img_data, np.uint8) | ||
13 | img_np = cv2.imdecode(img_arr, cv2.IMREAD_COLOR) | ||
14 | return img_np | ||
15 | |||
16 | |||
17 | app = Sanic('tamper_det') | ||
18 | |||
19 | |||
20 | @app.post('/tamper_det') | ||
21 | def hello(request): | ||
22 | d = request.json | ||
23 | print(d['img']) | ||
24 | img = base64_to_bgr(d['img']) | ||
25 | result = grpc_detect(img) | ||
26 | |||
27 | return json({'results': result}) | ||
28 | |||
29 | |||
30 | if __name__ == '__main__': | ||
31 | app.run(host='192.168.10.11', port=8009,workers=10) |
yolov5_onnx_demo/api_test.py
0 → 100644
1 | import base64 | ||
2 | |||
3 | import requests | ||
4 | import json | ||
5 | from yolov5_onnx_demo.model.yolov5_infer import * | ||
6 | |||
7 | def path_base64(file_path): | ||
8 | f = open(file_path, 'rb') | ||
9 | file64 = base64.b64encode(f.read()) # image 64 bytes 类型 | ||
10 | file64 = file64.decode('utf-8') | ||
11 | return file64 | ||
12 | |||
13 | |||
14 | res = requests.post('http://192.168.10.11:8009/tamper_det', data=json.dumps( | ||
15 | {'img': path_base64('/data/situ_invoice_bill_data/qfs_train_val_data/train_data/machine/minsheng/images/train/_1597386625.07514page_20_img_0_machine_name_full_splicing.jpg')})) | ||
16 | results = res.json() | ||
17 | img = cv2.imread( | ||
18 | '/data/situ_invoice_bill_data/qfs_train_val_data/train_data/machine/minsheng/images/train/_1597386625.07514page_20_img_0_machine_name_full_splicing.jpg') | ||
19 | print(res) | ||
20 | plot_label(img,results['keys']) |
yolov5_onnx_demo/model/__init__.py
0 → 100644
File mode changed
No preview for this file type
No preview for this file type
yolov5_onnx_demo/model/yolov5_infer.py
0 → 100644
1 | import cv2 | ||
2 | import numpy as np | ||
3 | import tritonclient.grpc as grpcclient | ||
4 | |||
5 | |||
6 | def keep_resize_padding(image): | ||
7 | ''' | ||
8 | 注意由于输入需要固定640*640的大小,而官方的推理为了加速采用了最小缩放比的方式进行 | ||
9 | 导致输入的尺寸不固定,重写resize方法,添加padding到640*640 | ||
10 | ''' | ||
11 | h, w, c = image.shape | ||
12 | if h >= w: | ||
13 | pad1 = (h - w) // 2 | ||
14 | pad2 = h - w - pad1 | ||
15 | p1 = np.ones((h, pad1, 3)) * 114.0 | ||
16 | p2 = np.ones((h, pad2, 3)) * 114.0 | ||
17 | p1, p2 = p1.astype(np.uint8), p2.astype(np.uint8) | ||
18 | new_image = np.hstack((p1, image, p2)) | ||
19 | padding_info = [pad1, pad2, 0] | ||
20 | else: | ||
21 | pad1 = (w - h) // 2 | ||
22 | pad2 = w - h - pad1 | ||
23 | p1 = np.ones((pad1, w, 3)) * 114.0 | ||
24 | p2 = np.ones((pad2, w, 3)) * 114.0 | ||
25 | p1, p2 = p1.astype(np.uint8), p2.astype(np.uint8) | ||
26 | new_image = np.vstack((p1, image, p2)) | ||
27 | padding_info = [pad1, pad2, 1] | ||
28 | new_image = cv2.resize(new_image, (640, 640)) | ||
29 | return new_image, padding_info | ||
30 | |||
31 | |||
32 | # remove padding | ||
33 | def extract_authentic_bboxes(image, padding_info, bboxes): | ||
34 | ''' | ||
35 | 反算坐标信息 | ||
36 | ''' | ||
37 | pad1, pad2, pad_type = padding_info | ||
38 | h, w, c = image.shape | ||
39 | bboxes = np.array(bboxes) | ||
40 | max_slide = max(h, w) | ||
41 | scale = max_slide / 640 | ||
42 | bboxes[:, :4] = bboxes[:, :4] * scale | ||
43 | if pad_type == 0: | ||
44 | bboxes[:, 0] = bboxes[:, 0] - pad1 | ||
45 | else: | ||
46 | bboxes[:, 1] = bboxes[:, 1] - pad1 | ||
47 | return bboxes.tolist() | ||
48 | |||
49 | |||
50 | # NMS | ||
51 | def py_nms_cpu( | ||
52 | prediction, | ||
53 | conf_thres=0.25, | ||
54 | iou_thres=0.45, | ||
55 | ): | ||
56 | """Non-Maximum Suppression (NMS) on inference results to reject overlapping detections | ||
57 | |||
58 | Returns: | ||
59 | list of detections, on (n,6) tensor per image [xyxy, conf, cls] | ||
60 | """ | ||
61 | xc = prediction[..., 4] > conf_thres # candidates | ||
62 | prediction = prediction[xc] | ||
63 | |||
64 | # MNS | ||
65 | x1 = prediction[..., 0] - prediction[..., 2] / 2 | ||
66 | y1 = prediction[..., 1] - prediction[..., 3] / 2 | ||
67 | x2 = prediction[..., 0] + prediction[..., 2] / 2 | ||
68 | y2 = prediction[..., 1] + prediction[..., 3] / 2 | ||
69 | |||
70 | areas = (x2 - x1 + 1) * (y2 - y1 + 1) | ||
71 | score = prediction[..., 5] | ||
72 | order = np.argsort(score) | ||
73 | keep = [] | ||
74 | while order.size > 0: | ||
75 | i = order[0] | ||
76 | keep.append(i) | ||
77 | |||
78 | xx1 = np.maximum(x1[i], x1[order[1:]]) | ||
79 | yy1 = np.maximum(y1[i], y1[order[1:]]) | ||
80 | xx2 = np.minimum(x2[i], x2[order[1:]]) | ||
81 | yy2 = np.minimum(y2[i], y2[order[1:]]) | ||
82 | |||
83 | ww, hh = np.maximum(0, xx2 - xx1 + 1), np.maximum(0, yy2 - yy1 + 1) | ||
84 | inter = ww * hh | ||
85 | |||
86 | over = inter / (areas[i] + areas[order[1:]] - inter) | ||
87 | |||
88 | idx = np.where(over < iou_thres)[0] | ||
89 | order = order[idx + 1] | ||
90 | |||
91 | return prediction[keep] | ||
92 | |||
93 | |||
94 | def client_init(url='localhost:8001', | ||
95 | ssl=False, | ||
96 | private_key=None, | ||
97 | root_certificates=None, | ||
98 | certificate_chain=None, | ||
99 | verbose=False): | ||
100 | triton_client = grpcclient.InferenceServerClient( | ||
101 | url=url, | ||
102 | verbose=verbose, # 详细输出 默认是False | ||
103 | ssl=ssl, | ||
104 | root_certificates=root_certificates, | ||
105 | private_key=private_key, | ||
106 | certificate_chain=certificate_chain, | ||
107 | ) | ||
108 | return triton_client | ||
109 | |||
110 | |||
111 | triton_client = client_init('localhost:8001') | ||
112 | compression_algorithm = None | ||
113 | input_name = 'images' | ||
114 | output_name = 'output0' | ||
115 | model_name = 'yolov5' | ||
116 | |||
117 | |||
118 | def grpc_detect(img): | ||
119 | image, padding_info = keep_resize_padding(img) | ||
120 | image = image.transpose((2, 0, 1))[::-1] | ||
121 | image = image.astype(np.float32) | ||
122 | image = image / 255.0 | ||
123 | if len(image.shape) == 3: | ||
124 | image = image[None] | ||
125 | |||
126 | outputs, inputs = [], [] | ||
127 | |||
128 | # 动态输入 | ||
129 | input_shape = image.shape | ||
130 | inputs.append(grpcclient.InferInput(input_name, input_shape, 'FP32')) | ||
131 | outputs.append(grpcclient.InferRequestedOutput(output_name)) | ||
132 | |||
133 | inputs[0].set_data_from_numpy(image.astype(np.float32)) | ||
134 | |||
135 | pred = triton_client.infer( | ||
136 | model_name=model_name, | ||
137 | inputs=inputs, outputs=outputs, | ||
138 | compression_algorithm=compression_algorithm | ||
139 | ) | ||
140 | pred = pred.as_numpy(output_name).copy() | ||
141 | result_bboxes = py_nms_cpu(pred) | ||
142 | result_bboxes = extract_authentic_bboxes(img, padding_info, result_bboxes) | ||
143 | return result_bboxes | ||
144 | |||
145 | |||
146 | def plot_label(img, result_bboxes): | ||
147 | print(result_bboxes) | ||
148 | for bbox in result_bboxes: | ||
149 | x, y, w, h, conf, cls = bbox | ||
150 | cv2.rectangle(img, (int(x - w // 2), int(y - h // 2)), (int(x + w // 2), int(y + h // 2)), (0, 0, 255), 2) | ||
151 | cv2.imshow('im', img) | ||
152 | cv2.waitKey(0) | ||
153 | |||
154 | |||
155 | if __name__ == '__main__': | ||
156 | img = cv2.imread( | ||
157 | '/data/situ_invoice_bill_data/qfs_train_val_data/train_data/authentic/gongshang/images/val/_1594890232.0110397page_11_img_0_name_au_gongshang.jpg') | ||
158 | |||
159 | result_bboxes = grpc_detect(img) | ||
160 | plot_label(result_bboxes) |
-
Please register or sign in to post a comment