add draw pr_result.jpg
Showing
1 changed file
with
27 additions
and
7 deletions
... | @@ -61,18 +61,38 @@ def get_evaluate_score(true_image_path, true_label_path, predict_label_path, thr | ... | @@ -61,18 +61,38 @@ def get_evaluate_score(true_image_path, true_label_path, predict_label_path, thr |
61 | p = precision_score(targets, predicts) | 61 | p = precision_score(targets, predicts) |
62 | r = recall_score(targets, predicts) | 62 | r = recall_score(targets, predicts) |
63 | conf = confusion_matrix(targets, predicts) | 63 | conf = confusion_matrix(targets, predicts) |
64 | bg_mask = np.ones((500, 500, 3)) * 255 | ||
65 | cv2.putText(bg_mask, f' authentic tampered ', (20, 50), cv2.FONT_ITALIC, 0.7, (0, 0, 255), 1) | ||
66 | cv2.putText(bg_mask, f'authentic {conf[0, 0]} {conf[0, 1]}', (20, 80), cv2.FONT_ITALIC, 0.7, | ||
67 | (0, 0, 255), 1) | ||
68 | cv2.putText(bg_mask, f'tempered {conf[1, 0]} {conf[1, 1]}', (20, 110), cv2.FONT_ITALIC, 0.7, | ||
69 | (0, 0, 255), 1) | ||
70 | cv2.putText(bg_mask, f'authentic precision:{round(conf[0, 0] / (conf[0, 0] + conf[1, 0]), 3)}', (20, 170), | ||
71 | cv2.FONT_ITALIC, 0.7, (0, 0, 255), 1) | ||
72 | cv2.putText(bg_mask, f' recall:{round(conf[0, 0] / (conf[0, 0] + conf[0, 1]), 3)}', (20, 200), | ||
73 | cv2.FONT_ITALIC, 0.7, (0, 0, 255), 1) | ||
74 | cv2.putText(bg_mask, f'tampered precision:{round(conf[1, 1] / (conf[0, 1] + conf[1, 1]), 3)}', (20, 230), | ||
75 | cv2.FONT_ITALIC, 0.7, (0, 0, 255), 1) | ||
76 | cv2.putText(bg_mask, f' recall:{round(conf[1, 1] / (conf[1, 0] + conf[1, 1]), 3)}', (20, 260), | ||
77 | cv2.FONT_ITALIC, 0.7, (0, 0, 255), 1) | ||
78 | cv2.imwrite(f'pr_result.jpg', bg_mask) | ||
64 | print('precison:', p) | 79 | print('precison:', p) |
65 | print('recall:', r) | 80 | print('recall:', r) |
66 | print(conf) | 81 | print(conf) |
67 | print(f' 预 测 ') | 82 | print(f' 预 测 ') |
68 | print(f' authentic tampered ') | 83 | print(f' authentic tampered ') |
69 | print(f'真 authentic \t\t{conf[0, 0]} \t\t{conf[0,1]}') | 84 | print(f'真 authentic \t\t{conf[0, 0]} \t\t{conf[0, 1]}') |
70 | print(f'实 tempered \t\t{conf[1, 0]} \t\t\t{conf[1,1]}') | 85 | print(f'实 tempered \t\t{conf[1, 0]} \t\t\t{conf[1, 1]}') |
71 | print(f'authentic precision:{conf[0,0]/(conf[0,0]+conf[1,0])}\trecall:{conf[0, 0]/(conf[0, 0]+conf[0, 1])}') | 86 | print( |
72 | print(f'tampered precision:{conf[1, 1]/(conf[0, 1]+conf[1, 1])}\trecall:{conf[1, 1]/(conf[1, 0]+conf[1, 1])}') | 87 | f'authentic precision:{conf[0, 0] / (conf[0, 0] + conf[1, 0])}\trecall:{conf[0, 0] / (conf[0, 0] + conf[0, 1])}') |
88 | print( | ||
89 | f'tampered precision:{conf[1, 1] / (conf[0, 1] + conf[1, 1])}\trecall:{conf[1, 1] / (conf[1, 0] + conf[1, 1])}') | ||
90 | |||
91 | |||
73 | if __name__ == '__main__': | 92 | if __name__ == '__main__': |
74 | true_image_path = '/data/situ_invoice_bill_data/qfs_train_val_data/gongshang/images/val' | 93 | true_image_path = '/data/situ_invoice_bill_data/qfs_train_val_data/test_data/only_human_ps/all/images' |
75 | true_label_path = '/data/situ_invoice_bill_data/qfs_train_val_data/gongshang/labels/val' | 94 | true_label_path = '/data/situ_invoice_bill_data/qfs_train_val_data/test_data/only_human_ps/all/labels' |
76 | predict_label_path = '/home/situ/qfs/invoice_tamper/09_project/project/tamper_det/runs/detect/exp4/labels' | 95 | predict_label_path = '/home/situ/qfs/invoice_tamper/09_project/project/tamper_det/runs/detect/exp2/labels' |
77 | threshold = 0.1 | 96 | threshold = 0.1 |
78 | get_evaluate_score(true_image_path, true_label_path, predict_label_path, threshold) | 97 | get_evaluate_score(true_image_path, true_label_path, predict_label_path, threshold) |
98 | ... | ... |
-
Please register or sign in to post a comment