#ifndef RETINAFACE_H #define RETINAFACE_H #include<opencv2/opencv.hpp> #include<MNN/Interpreter.hpp> #include<MNN/ImageProcess.hpp> #include<iostream> #include<memory> using namespace MNN; using namespace std; using namespace cv; struct Bbox{ float xmin; float ymin; float xmax; float ymax; float score; float x1; float y1; float x2; float y2; float x3; float y3; float x4; float y4; float x5; float y5; }; class RetinaFace{ public: float confidence_threshold = 0.5; bool is_bbox_process=true; int num_thread = 2; MNNForwardType forward_type = MNN_FORWARD_CPU; public: bool model_init=false; vector<int> input_size={640,640}; vector<float> variances={0.1,0.2}; float mean[3] = {104.0f, 117.0f, 123.0f}; float keep_top_k = 100; float nms_threshold = 0.4; float resize_scale = 1.0; std::shared_ptr<MNN::Interpreter> net; Session *session = nullptr; MNN::Tensor* input_tensor=nullptr; shared_ptr<MNN::CV::ImageProcess> pretreat; vector<vector<float>> anchors; private: // 生成anchors vector<vector<float>> priorBox(vector<int> image_size); // 解析bounding box landmarks 包含置信度 vector<Bbox> decode(float *loc,float *score,float *pre,vector<vector<float>> priors,vector<float> variances); // 解析landmarks // vector<vector<float>> decode_landm(vector<vector<float>> pre,vector<vector<float>> priors,vector<float> variances); //NMS void nms_cpu(std::vector<Bbox> &bboxes, float threshold); // 根据阈值筛选 vector<Bbox> select_score(vector<Bbox> bboxes,float threshold,float w_r,float h_r); // 数据后处理 vector<Bbox> bbox_process(vector<Bbox> bboxes,float frame_w,float frame_h); public: RetinaFace(){}; // ~RetinaFace(); bool init_model(string model_path); // 推理 vector<Bbox> inference(string image_path); vector<Bbox> inference(Mat image); }; #endif